Drain Pan Void Fill Structural Support CDOT Region 1

A drain pan structure running adjacent to US-287 near Broomfield Colorado had experienced significant voids of varying severity beneath the structure. The drain pan was designed to move water away from the roadway during water events and run off; however, due to issues with the design of this particular structure, water was running beneath the concrete and eroding areas beneath the pan. The integrity of the structure was compro-mised due to the weakened and eroded supporting soil.

CDOT needed an effective solution to treat and repair the almost 800 foot long problem section of drain pan that would not only fill the voided areas, but also protect it against additional damage and structural failure that may also effect the safety of the adjacent highway.

A thorough evaluation of the site was conducted prior to design of the repair plan for the drain pan. It was determined that the more severe voids were located on the uphill slope area of the structure. Alternate solutions, including a flowable fill, were taken into account while determining the most effective way to treat the area. However, due to the advanced features of CST’s proprie-tary injection process, and the unique characteristics of the specialized expanding structural polymer, it was determined that filling the voided areas using this process would most effectively and most efficiently solve the problem. Injections were made directly through the drain pan, filling voids, and strengthening the supporting soils.

The entire stretch of affected drain pan was void filled and stabilized in four days without any disruption to traffic flow along the adjacent highway.

The treatment method allowed CDOT to extend the use life of the structure and avoid the expense of tearing out and replacing the structure.

The specifically designed repair not only eliminated the void space beneath the pan and strengthened the soils, but also provided protection to the structure against future erosion.

Repair costs came in under budget for this project.

Railroad Subgrade Soil Stabilization Lift, and Re-alignment

A 70 foot section of railroad track near Green River, Wyoming had experienced ongoing settlement issues. During springtime, and high water events, the area required weekly re-compaction and leveling. The replaced ballast would continually sink into the wet subgrade soils.

A factor that contributed to the problem, is that the area is located at a drainage point of the surrounding hillsides.

Settlement of the subgrade soils was a continual problem for the railroad as well as the unsafe conditions for freight trains and their personnel travelling over this section of track.

Keeping the track open and safe was a major concern for the Rail Company.

CST partnered with Watco Rail representative Neal Ward to design an effective repair solution for the settled areas of track.

An initial site survey was conducted on all areas of the settled rail. Areas for treatment were identified and a site specific injection design was created to lift the settled areas, and stabilize the subgrade soils beneath the track and ballast to mitigate against any future settlement.

CST installed a high density structural polymer at pre-determined depths to treat weak soil and lift the settled track sections. Crews alternated between sections to allow train traffic to continue through the area.

All sections of settled track and weak soil zones were stabilized.

Injections made into the weak soil zones effectively pushed water away from the areas, and provided a protective barrier beneath the ballast, to stabilize and protect the area against future settlement.

Railroad track was lifted, and realigned to provide a stable, safe passage of the company’s freight trains and personnel traveling across the tracks.

All work was completed in a matter of 3 working shifts without major closure or disruption to trains traveling through.

Concrete Slab Lift Asphalt Pavement Lift Soil Stabilization – Pueblo, CO

This highway roundabout located in Pueblo West, Colorado had experienced settling of between 2 to 3 inches in areas of the concrete panels. The settlement had occurred as a result of poorly compacted soils. The settlement of the slabs had created a negative drainage situation, causing water to pool against the curb and gutter instead of draining away from the structure as originally designed.

As part of a larger paving project, Martin Marietta, a heavy highway contractor working on the section of roadway that included this roundabout, needed a solution to lift the settled concrete panels and correct the drainage issues the settlement had caused without ob-structing traffic flow through the rounda-bout and connecting roadways.

CST partnered with Martin Marietta to create a repair plan that would allow traffic to continue to flow through the roundabout while the panels and adjoining asphalt were lifted back to original profile. CST’s technologies were used to repair the settled slabs and pavement. The process employs injecting an expanding structural polymer that densifies and compacts soil, fills voids, and lifts settled concrete and asphalt. A rubberized barrier was used to assist injection crews in staging and protecting injection hoses across the roadway which allowed traffic to safely continue through the roundabout during the repair process. Martin Marietta used a water truck to wet down the roadway and panels to assist CST’s injection crew in locating and correcting the areas of settlement prior to beginning injections.

The settlement and soil compaction issues were efficiently and effectively addressed and corrected while allowing traffic to continue use of the roundabout and roadways during the repair. The con-crete panels and adjacent asphalt pavement were lifted back to original design profile which corrected the drainage problem.

The repair was completed in less than a day, preserving the existing concrete, correcting drainage, and guarding against future damage erosion, settlement, or damage to this roundabout structure and adjacent roadway.

CHALLENGES
Maintaining traffic flow during repair.
Safely staging injection equipment in the roundabout area.
Restore drainage away from the concrete panels.

BENEFITS In situ, no excavation repairs
Little to no downtime
Fast, cost -effective, permanent
Preserves and extends the life of existing structures & pavement

Union Pacific Railroad Crossing Lift Realignment and Soil Stabilization

A Union Pacific Railroad Crossing at the entrance of the Mountain Cement plant located in Laramie Wyoming, had experienced settlement of the precast panels beneath the track.

A soft spot beneath the panels and the presence of water had exacerbated settlement and caused the crossing panels to become misaligned.
Ed Hinker, Union Pacific Track Maintenance Manager, contacted CST to analyze and create a repair plan to provide in situ stabilization and realignment of the crossing.

Due to the location of the crossing, it was imperative that repairs be made quickly, without a lot of disruption to both truck and train traffic utilizing the crossing.

CST partnered with UP maintenance personnel and designed a site specific injection plan to stabilize the soft soils, lift, and realign the precast crossing panels, as well as beneath additional areas of track.

A thorough site investigation was first conducted to identify areas and depths for repair.

CST’s technicians placed injection probes into predetermined locations and depths, installing a high density, expanding structural polymer to stabilize the soft spots in the soil, and lift to realign the settled crossing panels.

Additional areas of subgrade soil were also treated in adjacent track sections leading up to and away from the crossing.
The railroad crossing precast panels were lifted, realigned, and stabilized in a matter of hours. The subgrade soils beneath the panels and areas of track were stabilized to mitigate against additional settlement.

Repairs were made with zero excavation and very little disruption to vehicles accessing the cement plant, or trains utilizing this section of track.

All areas were immediately available for use following the repair.

CST’s soil stabilization and concrete lifting technologies are an efficient and effective way to provide long term, precision repairs without the added expense of lengthy downtime or costly tear out and replace alternatives.

Colorado Bridge Approach Slab Settlement Lift

Bridge Approach Slab Settlement Repair – Crystal Valley Parkway, CO

Asphalt Pavement Lift of a Bridge Departure where the Subgrade had settled and the pavement needed to be lifted

In Castle Rock, CO, along the Crystal Valley Parkway, the Town of Castle Rock, CO was experiencing bridge approach slab settlement of 1,900 SF of bridge approach, departure, and sleeper slabs on two bridge ends and adjoining pavement. Settlement of adjacent sidewalk had also occurred causing an unsafe driving situation as well as dangerous conditions to pedestrians utilizing the crossover sidewalk area. The unstable subgrade reaching below the sleeper slab would need to be treated to stabilize the area before mill and fill of asphalt pavement could be performed.

Bridge Approach Slab Settlement Solution

CST partnered with the Town of Castle Rock, utilizing their Deep Injection process to treat unstable soil, lift the slabs, and realign sidewalk and pavement areas. Dynamic Cone Penetrometer soil tests were performed to correctly identify the weak soil zones. Injection tubes were placed at depth and expanding structural polymer injected to densify and provide stabilization of subgrade soils. Once the soil is stabilized, injections are continued to provide lift and realignment of the slabs and overlying pavement. The CST Deep Injection process provides proper support to the soil and heavy sleeper slabs to mitigate against future bridge approach slab settlement and movement, while also providing a solid subgrade for pavement.

Repairs were made in two shifts while allowing traffic to continue utilizing the area vs. time and money spent to reroute. Foundation soils were significantly strengthened to mitigate against future settlement. Bridge approach and departure slabs were lifted back to original elevation as well as stabilization and lift of sidewalk areas. Subgrade soils were quickly and effectively stabilized to provide a strong base for asphalt pavement mill and fill operations. The added benefit of water cutoff effectively arrests soil erosion within the area. Significant savings to municipalities and tax payers vs. alternative methods of rip out and replace. Extended use life of the bridge, sidewalk, and pavement.

Culvert Annular Void Fill

Utah DOT Culvert Annular Void Fill

Objective of this project was to fill annulus between culvert and surrounding embankment. The outer pipe was rusted out at the bottom and water was leaking in between the two pipes and coming out bottom of joint. Goal was to seal leaks in an outer pipe, surrounding smaller pipe and fill voids.

Critical elements of this project were dealing with the rusted out bottom of the outer surrounding pipe. Large amounts of water needed to be pushed out and fill resultant voids to assure pipe support and stability.